

Annual Drinking Water Quality Report for Calendar Year 2009

Elwood PWS

IL1970350

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. This report includes drinking water facts, information on violations (if applicable), and contaminants detected in your drinking water supply during calendar year 2009. Each year, we will provide you a new report. If you need help understanding this report or have general questions, please contact the person listed below.

Contact Name: Corey Byington
Este informe contiene información muy importante
sobre el agua que usted bebe. Tradúzcalo ó hable
con alguien que lo entienda bien.
Telephone Number: 815-423-6585
E-mail (if available) Corey.Byington@emcstl.com

Before we begin listing our unique water quality characteristics, here are some important facts you should know to help have a basic understanding of drinking water in general.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Our source of water comes from **Ground Water**

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Other Facts about Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Source Water Assessments

Source water protection (SWP) is a proactive approach to protecting our critical sources of public water supply and assuring that the best source of water is being utilized to serve the public. It involves implementation of pollution prevention practices to protect the water quality in a watershed or wellhead protection area serving a public water supply. Along with treatment, it establishes a multi-barrier approach to assuring clean and safe drinking water to the citizens of Illinois. The Illinois EPA has implemented a source water assessment program (SWAP) to assist with wellhead and watershed protection of public drinking water supplies.

Based on information obtained in a Well Site Survey, published in 1990 by the Illinois EPA, three potential sources or possible problem sites were identified within the survey area of Elwood wells. Furthermore, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated several additional sites with ongoing remediation which may be of concern. The Illinois EPA has determined that the Elwood Community Water Supply's source water is not susceptible to contamination. This determination is based on a number of criteria including: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data on the wells. Furthermore, in anticipation of the U.S. EPA's proposed Ground Water Rule, the Illinois EPA has determined that the Elwood Community Water Supply is not vulnerable to viral contamination. This determination is based upon the evaluation of the following criteria during the Vulnerability Waiver Process: the village's wells are properly constructed with sound integrity and proper site conditions; a hydrogeologic barrier exists which should prevent pathogen movement; all potential routes and sanitary defects have been mitigated such that the source water is adequately protected; monitoring data did not indicate a history of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination threat. Because the village wells are constructed in a confined aquifer, which should prevent the movement of pathogens into the wells, well hydraulics were not considered to be a significant factor in this vulnerability determination. Hence, well hydraulics were not evaluated for this groundwater supply. The Illinois Environmental Protection Act provides minimum protection zones of 200 feet for Elwood's wells. Minimum protection zones are regulated by the Illinois EPA. To further reduce the risk to source water, the facility has implemented a wellhead protection program, which includes the proper abandonment of potential routes of groundwater contamination and correction of sanitary defects at the water treatment facility. This effort resulted in the community water supply receiving a special exception permit from the Illinois EPA which allows a reduction in monitoring. The outcome of this monitoring reduction has saved the facility considerable laboratory analysis costs. To further minimize the risk to the facility's groundwater supply, the Illinois EPA recommends that four additional activities be assessed. First, the community may wish to enact a "maximum setback zone" ordinance to further protect their water supply. These ordinances are authorized by the Illinois Environmental Protection Act and allow county and municipal officials the opportunity to provide additional protection up to a fixed distance, normally 1,000 feet, from their wells. Second, the village should explore the options of either properly abandoning the inactive well or retrofitting it for active use as a source of water supply. Inactive wells that are not properly abandoned can act as direct conduits for surficial contaminants into the aquifer and are considered "routes" under the Environmental Protection Act. Third, the village staff may wish to revisit their contingency planning documents. Contingency planning documents are a primary means to ensure that, through emergency preparedness, a community will minimize their risk of being without safe and adequate water. Finally, the village staff is encouraged to review their cross connection control program to ensure that it remains current and viable. Cross connections to either the water treatment plant (for example, at bulk water loading stations) or in the distribution system may negate all source water protection initiatives provided by the village.

2009 Regulated Contaminants Detected

The next several tables summarize contaminants detected in your drinking water supply.

Here are a few definitions and scientific terms which will help you understand the information in the contaminant detection tables.

AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Avg	Regulatory compliance with some MCLs is based on running annual average of monthly samples.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the Maximum Contaminant Level Goal as feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MRDL	Maximum Residual Disinfectant Level: The highest level of disinfectant allowed in drinking water.
MRDLG	Maximum Residual Disinfectant Level Goal: The level of disinfectant in drinking water below which there is no known or expected risk to health. MRDLGs allow for a margin of safety.
N/A	Not Applicable
NTU	Nephelometric Turbidity Units
pCi/L	picocuries per liter (a measure of radioactivity)
ppb	parts per billion or micrograms per liter (ug/L) - or one ounce in 7,350,000 gallons of water.
ppm	parts per million or milligrams per liter (mg/L) - or one ounce in 7,350 gallons of water.
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Coliform Bacteria	MCLG	Total Coliform MCL	Highest Number of Positive Samples	Fecal Coliform or <i>E. coli</i> MCL	Total No. of Positive <i>E. coli</i> or Fecal Coliform Samples	Violation	Likely Source of Contamination
5 Sample Taken Per Month	0	MCL: presence of coliform bacteria in > 5% of monthly samples (for systems that collect 40 or more samples/month). > 1 positive monthly sample (for systems that collect < 40 samples/month).	0	Fecal Coliform or <i>E. coli</i> MCL: A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or <i>E. coli</i> positive	0	No	Naturally present in the environment

Lead and Copper								
	Date Sampled	MCLG	Action Level (AL)	90 th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	08/27/2009	1.3	1.3	0.278	0	ppm	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead	08/27/2009	0	15	<5	0	ppb	No	Corrosion of household plumbing systems; erosion of natural deposits.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Elwood PWS is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Disinfectants & Disinfection Byproducts	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	Daily	1.77	0.47-1.8	MRDLG=4	MRDL=4	ppm	No	Water additive used to control microbes
Inorganic Contaminants								
Barium	08/12/2009	0.0219	0.0148-0.0219	2	2	ppm	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride	08/12/2009	1.17	1.16-1.17	4	4.0	ppm	No	Erosion of natural deposits; Water additive which promotes strong teeth; Fertilizer discharge
Iron	08/12/2009	0.225	0.0702-0.225		1.0	ppm	No	Erosion of naturally occurring deposits;
Nitrate (measured as Nitrogen)	08/12/2009	0.076	0.076-0.076	10	10	ppm	No	Runoff from fertilizer use; Leaching from septic tanks, Sewage; Erosion of natural deposits.
Sodium	08/12/2009	170000	87500-150000			ppm	No	Erosion of naturally occurring deposits; used in water softener regeneration
Radiological Contaminants								
Combined Radium 226/228	08/12/2009	2.8	2.8-2.8	0	5	pCi/L	No	Erosion of natural deposits
Gross alpha excluding radon and uranium	08/12/2009	6.8	6.8-6.8	0	15	pCi/L	No	Erosion of natural deposits

Note: The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of this data may be more than one year old.

Violation Summary Table

We are happy to announce that no monitoring, reporting, treatment technique, maximum residual disinfectant level, or maximum contaminant level violations were recorded during 2009.