

2008 CONSUMER CONFIDENCE REPORT

VILLAGE OF ELWOOD

PUBLIC WATER SUPPLY

January 1, 2007

To

December 31, 2007

Presented

By

Village of Elwood

And

Environmental Management Corporation (EMC)

(Contract operator of the Elwood Public Water Supply)

Annual Drinking Water Quality Report

ELWOOD
IL1970350

Annual Water Quality Report for the period of January 1 to December 31, 2007

This report is intended to provide you with important information about your drinking water and the efforts made by the ELWOOD water system to provide safe drinking water. The source of drinking water used by ELWOOD is Ground Water.

For more information regarding this report contact:

Name Robert Bland

Phone (815) 423-6585

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo o hable con alguien que lo entienda bien.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

2007 Regulated Contaminants Detected

Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the Maximum Contaminant level Goal as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Maximum Residual Disinfectant level Goal (MRDLG): The level of disinfectant in drinking water below which there is no known or expected risk to health. MRDLGs allow for a margin of safety.

Regulated Contaminants

Disinfectants & Disinfection	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source Of Contaminant
Chlorine	12/31/2007	1.1	0.9 - 1.1	MRDLG=4	MRDL=4	ppm	No	Water additive used to control microbes
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source Of Contaminant
Barium	7/24/2006	0.012	Not Applicable	2	2	ppm	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride	7/24/2006	1.23	Not Applicable	4	4	ppm	No	Erosion of natural deposits; Water additive which promotes strong teeth; Fertilizer discharge
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source Of Contaminant
Combined Radium	4/26/2005	3.4	2.3 - 3.4	0	5	picocuries/liter	No	Erosion of natural deposits
Alpha Emitters	4/26/2005	4.7	2.7 - 4.7	0	15	picocuries/liter	No	Erosion of natural deposits
State Regulated Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source Of Contaminant
Iron	7/24/2006	76	Not Applicable	N/A	1000	ppb	No	Erosion from naturally occurring deposits
Sodium	7/24/2006	170	Not Applicable	N/A	N/A	ppm	No	Erosion of naturally occurring deposits; used in water softener regeneration

Note: The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of this data may be more than one year old.

Based on information obtained in a Well Site Survey, published in 1990 by the Illinois EPA, three potential sources or possible problem sites were identified within the survey area of Elwood. Furthermore, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated several additional sites with ongoing remediation which may be of concern. The Illinois EPA has determined that the Elwood Community Water Supply's source water is not susceptible to contamination. This determination is based on a number of criteria including: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data on the wells. Furthermore, in anticipation of the U.S. EPA's proposed Ground Water Rule, the Illinois EPA has determined that the Elwood Community Water Supply is not vulnerable to viral contamination. This determination is based upon the evaluation of the following criteria during the Vulnerability Waiver Process: the village's wells are properly constructed with sound integrity and proper site conditions; a hydrogeologic barrier exists which should prevent pathogen movement; all potential routes and sanitary defects have been mitigated such that the source water is adequately protected; monitoring data did not indicate a history of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination threat; because the village wells are constructed in a confined aquifer, which should prevent the movement of pathogens into the wells; well hydraulics were not considered to be a significant factor in this vulnerability determination. Hence, well hydraulics were not evaluated for this groundwater supply. The Illinois Environmental Protection Act provides minimum protection zones of 200 feet for Elwood's wells. Minimum protection zones are regulated by the Illinois EPA. To further reduce the risk to source water, the facility has implemented a wellhead protection program, which includes the proper abandonment of potential routes of groundwater contamination and correction of sanitary defects at the water treatment facility. This effort resulted in the community water supply receiving a special exception permit from the Illinois EPA which allows a reduction in monitoring. The outcome of this monitoring reduction has saved the facility considerable laboratory analysis costs. To further minimize the risk to the facility's groundwater supply, the Illinois EPA recommends that four additional activities be assessed. First, the community may wish to enact a maximum setback zone ordinance to further protect their water supply. These ordinances are authorized by the Illinois Environmental Protection Act and allow county and municipal officials the opportunity to provide additional protection up to a fixed distance, normally 1,000 feet, from their wells. Second, the village should explore the options of either properly abandoning the inactive well or retrofitting it for active use as a source of water supply. Inactive wells that are not properly abandoned can act as direct conduits for surface contaminants into the aquifer and are considered "routes" under the Environmental Protection Act. Third, the village staff may wish to revise their contingency planning documents. Contingency planning documents are a primary means to ensure that through emergency preparedness, a community will minimize their risk of being without safe and adequate water. Finally, the village staff is encouraged to review their cross connection control program to ensure that it remains current and viable. Cross connections to either the water treatment plant (for example, at bulk water loading stations) or in the distribution system may negate all source water protection initiatives provided by the village.